Wavelet-based multiscale atlas estimation

Fleur Gaudfernau¹, Stéphanie Allassonière¹ and Erwan Le Pennec²

[1] CRC, Université de Paris, INRIA EPI HeKa, INSERM UMR 1138, Sorbonne Université [2] CMAP, Ecole polytechnique, Institut Polytechnique de Paris

Introduction

Atlas estimation: given a dataset of shapes $[I_1, ..., I_n]$ that are instances of the same anatomical object, we seek to estimate:

- a template image I₀ (average anatomy)
- n template-to-subject deformations Φ_i (variance) s.t. $I_i = I_0 \circ \Phi_i^{-1} + \epsilon_i$ (with ϵ_i an additive random white noise)

The LDDMM framework:

- The Φ_i are constructed by integrating time-dependent velocity fields v_{ti}
- These vector fields belong to a RKHS defined by a regularizing kernel K_{α}

• Discrete parametrization of the vector fields: $v_0(x) = \sum_{k=0}^{k_g} K_g(x, \widehat{c_{k,0}})$

Regularizing kernel of width σ_a momentum vectors

control points

Geodesic shooting: to compute shape transformations, we only optimize the **initial** vector field v_0 (i.e. the vectors $(\alpha_0)_k$) that define a geodesic path between a source shape and a target shape.

Cost function:
$$E(I_0, (\alpha_{0,i})_i) = \sum_{i=1}^N \frac{1}{2\sigma^2} \underbrace{\|I_i - I_0 \circ \Phi_{1,i}^{-1}\|^2}_{\text{attachment}} + \underbrace{\|V_{0,i}\|_V^2}_{\text{regularity}}$$

*** - - 1 1

+++--

1--11

Geodesic shooting between a source image (left) and a target image (right).

• Optimization through gradient descent \rightarrow efficient computation of the gradients because the v_0 are linear combination of kernels of the RKHS

Issues:

2. Risk of trapping the optimization in an unrealistic local minima

Deformation grid generated by a small kernel

Core idea

Decompose the subjects' velocity fields $v_{0,i}$ in a new basis

- Original coordinates α_i in the RKHS basis: $V_{0,i}(\mathbf{X}) = \sum_{k} K_{g}(\mathbf{X}, \mathbf{C}_{k}) \alpha_{k,i}$
- where $K_q(., c_k)$ is a function of scale *s* and location *k*
- \implies Spatial regularization through the L² norm $\|v_{0,i}\|_{V}^{2}$

We set to zero some detail coefficients in β_i to smooth the vector fields. These constraints are progressively relaxed in a coarse-to-fine fashion.

 \implies We add a layer of spatial regularization

The Haar wavelet transform

Multiscale decomposition of signals

Rely on a collection of nested spaces

Algorithm

with ϕ : scaling function, ψ : wavelet function, s: scale, k: location

Scale 0

Reparametrization of v_0

- The dataset is randomly split into a training set (80%) and a test set (20%)
- Training: atlas estimation with the training images Test: registration of the estimated template image to the test images

	Registration		
5	36	90.2 ± 6.2	94.0 ± 6.3
4	49	89.3 ± 6.0	95.4 ± 4.2

The procedure is repeated 5 times and reproduced for different parameters (number of control points and kernel width).

Template images

3 100 86.6 ± 7.5 96.4 ± 3.8

Performance of the original and multiscale algorithms during training and test. Data: mean \pm standard deviation of residuals percentage decrease. σ_q : kernel width; k_q : number of control points.

regularization to the model

multiscale: a coarse-to-fine strategy favors more realistic template images and promotes multiscale deformations.

• **simple**: we only add an outer layer of spatial

References

- [1] A. Bône et al. Deformetrica 4: An open-source software for statistical shape analysis. 2018.
- [2] S. Durrleman et al. Sparse adaptive parameterization of variability in image ensembles. International Journal of Computer Vision, 101:1–23, 2012.
- [3] U. Grenander and M. Miller. Computational anatomy: An emerging discipline. Quarterly of Applied Mathematics, 56(4):617–694, 1998.
- [4] S. Mallat. A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way. Academic Press, Inc., USA, 3rd edition, 2008.
- [5] M. Miller, A. Trouvé, and L. Younes. On the metrics and euler-lagrange equations of computational anatomy. Annual review of biomedical engineering, 4:375-405, 2002.

[6] M. Miller, A. Trouvé, and L. Younes. Geodesic shooting for computational anatomy. Journal of mathematical imaging and vision 24.200-228 2006

Reconstructed training images

Original

Multiscale

Estimation of the template image by the original and multiscale algorithms for $\sigma_q = 3$ and $k_q = 100$. Left: five estimated template images (for each fold of cross-validation). Right: first template image wrapped to the first five training images.