Wavelet-based multiscale atlas estimation
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Introduction
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Atlas estimation: given a dataset of shapes |I1, ..., /] The LDDMM framework: NNNN S~ o
that are instances of the same anatomical object, we . . . L L VNN NN s e sy
coak to ectimate: - The 9; are constructed by integrating time-dependant velocity fields v i : : : , :
= These vector fields belong to a RKHS defined by a regularizing kernel K, I : N
= a template image /; . control points
g N
(average anatomy) - Discrete parametrization of the vector fields: vo(x) = 3 K, (X, Cko) ko
k=1~~~ —~—

Regularizing kernel of width ¢4 momentum vectors

* n template-to-subject
deformations o,
(variance) s.t.
li=1lgo® ! +¢
(with ¢; an additive
random white noise)

* Geodesic shooting: to compute shape
transformations, we only optimize the initial vector
field vq (i.e. the vectors (ag),) that define a geodesic
path between a source shape and a target shape.
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- Cost function: E(lg, (o)) = _Z S H
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Geodesic shooting between a source image
(left) and a target image (right).
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« Optimization through gradient descent — efficient computation of the gradients because
the v are linear combination of kernels of the RKHS

Issues:

1. Deformations v ; are constrained to a single scale
by the kernel width ¢,

2. Risk of trapping the optimization in an unrealistic
local minima
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Deformation grid
generated by a large kernel

Deformation grid generated
by a small kernel

Core idea The Haar wavelet transform

Decompose the subjects’ velocity fields v;; in a new basis . — .
= Multiscale decomposition of signals

* Original coordinates «; in the RKHS basis:
Vo,i(X) = E/(:Kg(xa Ck ) |
where Kq(.,Ck) Is a function of scale s and location k

 New coordinates 5; In a wavelet basis:
Vo,i(X) = 553 Ekj EO: Dok (X)Bek i

with ¢ a function of scale s, location k and orientation o

= Rely on a collection of nested spaces

—> Spatial regularization through the L% norm |\v¢ [, = We add a layer of spatial regularization {¢5—1,k}k L] {¢s_1,k}k 4
- VAN vy o L sk}, Wskhe T,
We set to zero some detail coefficients VAN NN/ S e
In 5; to smooth the vector fields. These N O / T . {¢5_|_17/<}k I {wsﬂjk}k 1
constraints are progressively relaxed i R P N / " \//
. . . o PR L
In a coarse-to-fine fashion, e N e —~— .~ P g Local approximation Local details
Scale 2 Scale 1 Scale O with ¢: scaling function, ¢: wavelet function, s: scale, k: location

Reparametrization of vy

Algorithm

Even if we define vg; through the
wavelet coefficients 5;, the RKHS
structure of the velocity fields is
preserved - and thus the efficient
computation of the gradients.

Forward Wavelet Transform (FWT)
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Initialization
Template Ip = 2 S0, 1;
Control points ¢y
Momentum vectors «g; = OVi
Boilf) = FWT (g i()))Vi
Current scale S; = maximum scale of 5 o(/)
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Gradients computation Gradient descent
Vi, E lo(j) =1loj —1) —h xV, E
VozoJ-E Bo /(./) Bo /(] 1) h x v50,/'E
Isisko CVOI(./ —IWT 50/0))

Vo,E = FWT(V o E) =

Scale refinement

Finer scale silencing
For each detail coefficient d.¢: if we are close to convergence and S; > 1:
5;=S5;1-1

if s < S diS, =0
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Vo = > Kgl(., Ck)ak i(0)
k average coefﬁaents
coordinates §;

235k1¢5k+ Y > /<I¢
\ //

Inverse Wavelet Transform (IWT)

detail coefficients
Experiments
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10 examples images from the dataset of artificial characters used to evaluate our atlas
estimation algorithm
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Conclusion

Original  Multiscale
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Atlas estimation This atlas estimation algorithm is:

We compare the original algorithm to the multiscale version > 36 86.0+4.5 94.5+0.8
. L 4 49 836+3.8 95.6+0.4 . efficient: the efficient obtimizat
using cross-validation. 3 100 816 L45 967+ 05 efficient: we preserve the efficient optimization
* The dataset is randomly split into a training set (80%) and a Registration scheme of the original algorithm
0 5 36 90.2+6.2 94.0+6.3 : .
test set (20%) 4 49 893460 954 +42 - simple: we only add an outer layer of spatial
= Training: atlas estimation with the training images 3 100 866+75 964+ 3.8 reqularization to the model

» Test: registration of the estimated template image to the test
images

The procedure is repeated 5 times and reproduced for different

parameters (number of control points and kernel width).

Performance of the original and multiscale
algorithms during training and test. Data:
mean + standard deviation of residuals
percentage decrease. o4: kernel width; ky:
number of control points.

 multiscale: a coarse-to-fine strategy favors more
realistic template images and promotes multiscale
deformations.

Template images Reconstructed training images
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Estimation of the template image by the original and multiscale algorithms for o4 = 3 and ky = 100. Left: five estimated
template images (for each fold of cross-validation). Right: first template image wrapped to the first five training images.
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