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Introduction

Atlas estimation: given a dataset of shapes [I1, ..., In]
that are instances of the same anatomical object, we

seek to estimate:

a template image I0
(average anatomy)

n template-to-subject

deformations Φi

(variance) s.t.

Ii = I0 ◦ Φ−1
i + εi

(with εi an additive
random white noise)

Φ5
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Φ2

Φ3
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The LDDMM framework:

The Φi are constructed by integrating time-dependant velocity fields vt,i

These vector fields belong to a RKHS defined by a regularizing kernel Kg

Discrete parametrization of the vector fields: v0(x) =
kg∑
k=1

Kg︸︷︷︸
Regularizing kernel of width σg

(x,

control points︷︸︸︷
ck,0) αk,0︸︷︷︸

momentum vectors

Geodesic shooting: to compute shape

transformations, we only optimize the initial vector

field v0 (i.e. the vectors (α0)k) that define a geodesic

path between a source shape and a target shape.

Cost function: E(I0, (α0,i)i) =
N∑
i=1

1
2σ2

‖Ii − I0 ◦ Φ−1
1,i ‖

2︸ ︷︷ ︸
attachment

+ ‖v0,i‖2V︸ ︷︷ ︸
regularity

Geodesic shooting between a source image
(left) and a target image (right).

Optimization through gradient descent −→ efficient computation of the gradients because

the v0 are linear combination of kernels of the RKHS

Issues:

1. Deformations v0,i are constrained to a single scale

by the kernel width σg
2. Risk of trapping the optimization in an unrealistic

local minima Deformation grid
generated by a large kernel

Deformation grid generated
by a small kernel

Core idea

Decompose the subjects’ velocity fields v0,i in a new basis

Original coordinates αi in the RKHS basis:

v0,i(x) =
∑
k
Kg(x, ck)αk,i

where Kg(., ck) is a function of scale s and location k

=⇒ Spatial regularization through the L2 norm ‖v0,i‖2V

New coordinates βi in a wavelet basis:

v0,i(x) =
∑
s

∑
k

∑
o
φos,k(x)β

o
s,k,i

with φ a function of scale s, location k and orientation o

=⇒ We add a layer of spatial regularization

We set to zero some detail coefficients

in βi to smooth the vector fields. These

constraints are progressively relaxed

in a coarse-to-fine fashion.
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The Haar wavelet transform

Multiscale decomposition of signals

Rely on a collection of nested spaces
...{

φs−1,k
}
k{

φs,k
}
k{

φs+1,k
}
k

...

Local approximation

...{
ψs−1,k

}
k{

ψs,k
}
k{

ψs+1,k
}
k

...

Local details

with φ: scaling function, ψ: wavelet function, s: scale, k: location

Reparametrization of v0

v0,i =
∑
k
Kg(., ck)αk,i(0)

v0,i =
∑
k
aS,k,i︸ ︷︷ ︸

average coefficients

φ̃S,k +
S∑

s′=s+1

∑
o,k

do
s′,k,i︸ ︷︷ ︸

detail coefficients︸ ︷︷ ︸
coordinates βi

ψ̃o
s′,k

Forward Wavelet Transform (FWT)

Inverse Wavelet Transform (IWT)

Even if we define v0,i through the

wavelet coefficients βi, the RKHS

structure of the velocity fields is

preserved - and thus the efficient

computation of the gradients.

Algorithm
Initialization

Template I0 = 1
N

∑N
i=1 Ii

Control points c0
Momentum vectors α0,i = 0∀i

β0,i(j) = FWT(α0,i(j))∀i
Current scale Sj = maximum scale of β0,0(j)

Gradients computation

∇I0
E

∇α0,i
E ∀i

∇β0,i
E = FWT(∇α0,i

E) = (aiSmax,k
)k ∪ (di,o

s,k)s,k,o

Gradient descent

I0(j) = I0(j − 1) − h × ∇I0
E

β0,i(j) = β0,i(j − 1) − h × ∇β0,i
E

α0,i(j) = IWT(β0,i(j))

Finer scale silencing

For each detail coefficient di,o
s,k:

if s < Sj: d
i,o
s,k = 0

Scale refinement

if we are close to convergence and Sj > 1:

Sj = Sj−1 − 1

Experiments

10 examples images from the dataset of artificial characters used to evaluate our atlas
estimation algorithm

We compare the original algorithm to the multiscale version

using cross-validation.

The dataset is randomly split into a training set (80%) and a

test set (20%)

Training: atlas estimation with the training images

Test: registration of the estimated template image to the test

images

The procedure is repeated 5 times and reproduced for different

parameters (number of control points and kernel width).

σg kg Original Multiscale

Atlas estimation
5 36 86.0 ± 4.5 94.5 ± 0.8
4 49 83.6 ± 3.8 95.6 ± 0.4
3 100 81.6 ± 4.5 96.7 ± 0.5

Registration
5 36 90.2 ± 6.2 94.0 ± 6.3
4 49 89.3 ± 6.0 95.4 ± 4.2
3 100 86.6 ± 7.5 96.4 ± 3.8

Performance of the original and multiscale
algorithms during training and test. Data:
mean ± standard deviation of residuals
percentage decrease. σg: kernel width; kg:
number of control points.

Estimation of the template image by the original and multiscale algorithms for σg = 3 and kg = 100. Left: five estimated
template images (for each fold of cross-validation). Right: first template image wrapped to the first five training images.

Conclusion

This atlas estimation algorithm is:

efficient: we preserve the efficient optimization

scheme of the original algorithm

simple: we only add an outer layer of spatial

regularization to the model

multiscale: a coarse-to-fine strategy favors more

realistic template images and promotes multiscale

deformations.
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